• Version:
  • 11.0 [archived version]
STRINGSTRING
CYP4A22 CYP4A22 CYP4V2 CYP4V2 SQLE SQLE CYP19A1 CYP19A1 CYP26B1 CYP26B1 KMO KMO ORC4 ORC4 CYP26C1 CYP26C1 SCPEP1 SCPEP1 CYP26A1 CYP26A1 TMUB2 TMUB2 SIL1 SIL1 ATP6V1A ATP6V1A ZAP70 ZAP70 SYK SYK GNPNAT1 GNPNAT1 TMUB1 TMUB1 RDH5 RDH5 DDI2 DDI2 RLBP1 RLBP1 COQ6 COQ6 RGR RGR UBE2G1 UBE2G1 IDH3B IDH3B HERC3 HERC3 IDH3G IDH3G
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CYP26B1Cytochrome P450 26B1; Involved in the metabolism of retinoic acid (RA), rendering this classical morphogen inactive through oxidation. Involved in the specific inactivation of all-trans-retinoic acid (all-trans-RA), with a preference for the following substrates- all-trans-RA > 9-cis-RA > 13-cis-RA. Generates several hydroxylated forms of RA, including 4-OH-RA, 4-oxo-RA, and 18-OH- RA. Essential for postnatal survival. Plays a central role in germ cell development- acts by degrading RA in the developing testis, preventing STRA8 expression, thereby leading to delay of meiosis. Required [...] (512 aa)
GNPNAT1Glucosamine-phosphate N-acetyltransferase 1; Belongs to the acetyltransferase family. GNA1 subfamily (184 aa)
IDH3GIsocitrate dehydrogenase [NAD] subunit gamma, mitochondrial; Regulatory subunit which plays a role in the allosteric regulation of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers (393 aa)
CYP26A1Cytochrome P450 26A1; Plays a key role in retinoic acid metabolism. Acts on retinoids, including all-trans-retinoic acid (RA) and its stereoisomer 9-cis-RA. Capable of both 4-hydroxylation and 18- hydroxylation. Responsible for generation of several hydroxylated forms of RA, including 4-OH-RA, 4-oxo-RA and 18-OH-RA; Belongs to the cytochrome P450 family (497 aa)
RDH511-cis retinol dehydrogenase; Stereospecific 11-cis retinol dehydrogenase, which catalyzes the final step in the biosynthesis of 11-cis retinaldehyde, the universal chromophore of visual pigments. Also able to oxidize 9-cis-retinol and 13-cis-retinol, but not all- trans-retinol. Active in the presence of NAD as cofactor but not in the presence of NADP; Short chain dehydrogenase/reductase superfamily (318 aa)
SCPEP1Retinoid-inducible serine carboxypeptidase; May be involved in vascular wall and kidney homeostasis; M14 carboxypeptidases (452 aa)
ZAP70Tyrosine-protein kinase ZAP-70; Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Contributes also to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated T [...] (619 aa)
SQLESqualene monooxygenase; Catalyzes the first oxygenation step in sterol biosynthesis and is suggested to be one of the rate-limiting enzymes in this pathway; Belongs to the squalene monooxygenase family (574 aa)
RLBP1Retinaldehyde-binding protein 1; Soluble retinoid carrier essential the proper function of both rod and cone photoreceptors. Participates in the regeneration of active 11-cis-retinol and 11-cis-retinaldehyde, from the inactive 11-trans products of the rhodopsin photocycle and in the de novo synthesis of these retinoids from 11-trans metabolic precursors. The cycling of retinoids between photoreceptor and adjacent pigment epithelium cells is known as the ’visual cycle’ (317 aa)
ATP6V1AV-type proton ATPase catalytic subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the ATPase alpha/beta chains family (617 aa)
CYP26C1Cytochrome P450 26C1; Plays a role in retinoic acid metabolism. Acts on retinoids, including all-trans-retinoic acid (RA) and its stereoisomer 9-cis-RA (preferred substrate); Belongs to the cytochrome P450 family (522 aa)
COQ6Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial; FAD-dependent monooxygenase required for the C5-ring hydroxylation during ubiquinone biosynthesis. Catalyzes the hydroxylation of 3-polyprenyl-4-hydroxybenzoic acid to 3- polyprenyl-4,5-dihydroxybenzoic acid. The electrons required for the hydroxylation reaction may be funneled indirectly from NADPH via a ferredoxin/ferredoxin reductase system to COQ6 (468 aa)
RGRRPE-retinal G protein-coupled receptor; Receptor for all-trans- and 11-cis-retinal. Binds preferentially to the former and may catalyze the isomerization of the chromophore by a retinochrome-like mechanism; Opsin receptors (295 aa)
KMOKynurenine 3-monooxygenase; Catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-3OHKyn). Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Quinolinic acid may also affect NMDA receptor signaling in pancreatic beta cells, osteoblasts, myocardial cells, and the gastrointestinal tract (486 aa)
CYP4A22Cytochrome P450 4A22; Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate and palmitate. Shows no activity towards arachidonic acid and prostaglandin A1. Lacks functional activity in the kidney and does not contribute to renal 20-hydroxyeicosatetraenoic acid (20-HETE) biosynthesis; Cytochrome P450 family 4 (519 aa)
SYKTyrosine-protein kinase SYK; Non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immunoreceptors like the B-cell receptor (BCR). Regulates several biological processes including innate and adaptive immunity, cell adhesion, osteoclast maturation, platelet activation and vascular development. Assembles into signaling complexes with activated receptors at the plasma membrane via interaction between its SH2 domains and the receptor tyrosine- phosphorylated ITAM domains. The association with the receptor can [...] (635 aa)
CYP4V2Cytochrome P450 4V2; Omega-hydroxylase that oxidizes medium-chain saturated fatty acids and polyunsaturated omega-3 fatty acids, and which plays a role in fatty acid and steroid metabolism in the eye. Catalyzes the omega- hydroxylation of medium-chain saturated fatty acids such as laurate, myristate and palmitate in an NADPH-dependent pathway. The substrate specificity is higher for myristate > laurate > palmitate (C14>C16>C12). Acts as a polyunsaturated omega-3 fatty acids hydroxylase by mediating oxidation of docosahexaenoate (DHA) to 22-hydroxydocosahexaenoate. Also produces some 21 [...] (525 aa)
IDH3BIsocitrate dehydrogenase [NAD] subunit beta, mitochondrial; Plays a structural role to facilitate the assembly and ensure the full activity of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers (385 aa)
TMUB1Transmembrane and ubiquitin-like domain-containing protein 1; Involved in sterol-regulated ubiquitination and degradation of HMG-CoA reductase HMGCR. Involved in positive regulation of AMPA-selective glutamate receptor GRIA2 recycling to the cell surface (By similarity). Acts as negative regulator of hepatocyte growth during regeneration (By similarity) (246 aa)
SIL1Nucleotide exchange factor SIL1; Required for protein translocation and folding in the endoplasmic reticulum (ER). Functions as a nucleotide exchange factor for the ER lumenal chaperone HSPA5; Belongs to the SIL1 family (461 aa)
CYP19A1Aromatase; Catalyzes the formation of aromatic C18 estrogens from C19 androgens; Cytochrome P450 family 19 (503 aa)
UBE2G1Ubiquitin-conjugating enzyme E2 G1; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 48’-, as well as ’Lys-63’-linked polyubiquitination. May be involved in degradation of muscle-specific proteins. Mediates polyubiquitination of CYP3A4; Ubiquitin conjugating enzymes E2 (170 aa)
HERC3Probable E3 ubiquitin-protein ligase HERC3; E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (1050 aa)
DDI2DNA damage inducible 1 homolog 2; Belongs to the DDI1 family (399 aa)
ORC4Origin recognition complex subunit 4; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3; Belongs to the ORC4 family (436 aa)
TMUB2Transmembrane and ubiquitin like domain containing 2 (321 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (2%) [HD]