• Version:
  • 11.0 [archived version]
STRINGSTRING
RGS11 RGS11 RGS2 RGS2 SIRT1 SIRT1 RGS8 RGS8 RGS9 RGS9 PDCL PDCL PDE6G PDE6G PDC PDC GNB1 GNB1 RGS16 RGS16 GNB3 GNB3 CNGB1 CNGB1 GNAT2 GNAT2 GNGT1 GNGT1 GNG2 GNG2 RHO RHO GNB2 GNB2 GNG11 GNG11 GPSM2 GPSM2 GNB4 GNB4 CNGB3 CNGB3 GNG3 GNG3 GPSM1 GPSM1 RGS14 RGS14 ACSL3 ACSL3 RGS10 RGS10
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SIRT1NAD-dependent protein deacetylase sirtuin-1; NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expres [...] (747 aa)
GNB3Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
GNB4Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
RGS2Regulator of G-protein signaling 2; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. It is involved in the negative regulation of the angiotensin-activated signaling pathway. Plays a role in the regulation of blood pressure in response to signaling via G protein-coupled receptors and GNAQ. Plays a role in regulating the constriction and relaxation of vascular smooth muscle (By similarity). Binds EIF2B5 and blocks its activity, ther [...] (211 aa)
GNG11Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-11; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (73 aa)
GNGT1Guanine nucleotide-binding protein G(T) subunit gamma-T1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (74 aa)
CNGB1Cyclic nucleotide-gated cation channel beta-1; Subunit of cyclic nucleotide-gated (CNG) channels, nonselective cation channels, which play important roles in both visual and olfactory signal transduction. When associated with CNGA1, it is involved in the regulation of ion flow into the rod photoreceptor outer segment (ROS), in response to light-induced alteration of the levels of intracellular cGMP (1251 aa)
GNAT2Guanine nucleotide-binding protein G(t) subunit alpha-2; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Transducin is an amplifier and one of the transducers of a visual impulse that performs the coupling between rhodopsin and cGMP-phosphodiesterase; Belongs to the G-alpha family. G(i/o/t/z) subfamily (354 aa)
RGS8Regulator of G-protein signaling 8; Regulates G protein-coupled receptor signaling cascades, including signaling via muscarinic acetylcholine receptor CHRM2 and dopamine receptor DRD2 (By similarity). Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Modulates the activity of potassium channels that are activated in response to DRD2 and CHRM2 signaling (By similarity) (198 aa)
PDCLPhosducin-like protein; Isoform 1- Functions as a co-chaperone for CCT in the assembly of heterotrimeric G protein complexes, facilitates the assembly of both Gbeta-Ggamma and RGS-Gbeta5 heterodimers (301 aa)
RGS9Regulator of G-protein signaling 9; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G(t)-alpha. Involved in phototransduction; key element in the recovery phase of visual transduction (By similarity); Regulators of G-protein signaling (674 aa)
GNG3Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (75 aa)
RHORhodopsin; Photoreceptor required for image-forming vision at low light intensity. Required for photoreceptor cell viability after birth. Light-induced isomerization of 11-cis to all-trans retinal triggers a conformational change leading to G-protein activation and release of all-trans retinal; Belongs to the G-protein coupled receptor 1 family. Opsin subfamily (348 aa)
GNB2Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
CNGB3Cyclic nucleotide-gated cation channel beta-3; Visual signal transduction is mediated by a G-protein coupled cascade using cGMP as second messenger. This protein can be activated by cGMP which leads to an opening of the cation channel and thereby causing a depolarization of rod photoreceptors. Induced a flickering channel gating, weakened the outward rectification in the presence of extracellular calcium, increased sensitivity for L-cis diltiazem and enhanced the cAMP efficiency of the channel when coexpressed with CNGA3 (By similarity). Essential for the generation of light-evoked ele [...] (809 aa)
PDE6GRetinal rod rhodopsin-sensitive cGMP 3’,5’-cyclic phosphodiesterase subunit gamma; Participates in processes of transmission and amplification of the visual signal. cGMP-PDEs are the effector molecules in G-protein-mediated phototransduction in vertebrate rods and cones; Phosphodiesterases (87 aa)
GNG2Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (By similarity) (71 aa)
ACSL3Long-chain-fatty-acid--CoA ligase 3; Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL3 mediates hepatic lipogenesis (By similarity). Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates (By similarity). Has mainly an anabolic role in energy metabolism. Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins); Belongs to the ATP-dependent AMP-binding enzyme family (720 aa)
RGS16Regulator of G-protein signaling 16; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Plays an important role in the phototransduction cascade by regulating the lifetime and effective concentration of activated transducin alpha. May regulate extra and intracellular mitogenic signals (By similarity) (202 aa)
RGS10Regulator of G-protein signaling 10; Regulates G protein-coupled receptor signaling cascades, including signaling downstream of the muscarinic acetylcholine receptor CHRM2. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Modulates the activity of potassium channels that are activated in response to CHRM2 signaling. Activity on GNAZ is inhibited by palmitoylation of the G-protein (181 aa)
PDCPhosducin; May participate in the regulation of visual phototransduction or in the integration of photoreceptor metabolism. Inhibits the transcriptional activation activity of the cone-rod homeobox CRX; Belongs to the phosducin family (246 aa)
RGS11Regulator of G-protein signaling 11; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form; Regulators of G-protein signaling (467 aa)
GPSM2G-protein-signaling modulator 2; Plays an important role in mitotic spindle pole organization via its interaction with NUMA1. Required for cortical dynein- dynactin complex recruitment during metaphase. Plays a role in metaphase spindle orientation. Plays also an important role in asymmetric cell divisions. Has guanine nucleotide dissociation inhibitor (GDI) activity towards G(i) alpha proteins, such as GNAI1 and GNAI3, and thereby regulates their activity (By similarity); Deafness associated genes (684 aa)
RGS14Regulator of G-protein signaling 14; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o) alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pat [...] (566 aa)
GPSM1G-protein-signaling modulator 1; Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G- protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein-coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction; Belongs to the GPSM family (675 aa)
GNB1Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]