• Version:
  • 11.0 [archived version]
STRINGSTRING
SMU1 SMU1 LSM8 LSM8 LSM4 LSM4 SNRPG SNRPG TXNL4A TXNL4A SNRNP200 SNRNP200 SNRNP40 SNRNP40 SNRPD1 SNRPD1 PRPF3 PRPF3 SNRPF SNRPF PHF5A PHF5A EFTUD2 EFTUD2 SNRPD3 SNRPD3 PRPF38A PRPF38A LSM3 LSM3 SF3B3 SF3B3 SNRPA1 SNRPA1 PRPF4 PRPF4 PPIH PPIH LSM2 LSM2 SNRPB SNRPB PRPF31 PRPF31 LSM5 LSM5 LSM7 LSM7 LSM6 LSM6 DDX23 DDX23
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SNRPD3Small nuclear ribonucleoprotein Sm D3; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (126 aa)
PHF5APHD finger-like domain-containing protein 5A; Involved with the PAF1 complex (PAF1C) in transcriptional elongation by RNA polymerase II, and in regulation of development and maintenance of embryonic stem cell (ESC) pluripotency. Required for maintenance of ESCs self-renewal and cellular reprogramming of stem cells. Maintains pluripotency by recruiting and stabilizing PAF1C on pluripotency genes loci, and by regulating the expression of the pluripotency genes. Regulates the deposition of elongation-associated histone modifications, including dimethylated histone H3 ’Lys-79’ (H3K79me2) a [...] (110 aa)
LSM8U6 snRNA-associated Sm-like protein LSm8; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome; Belongs to the snRNP Sm proteins family (96 aa)
LSM7U6 snRNA-associated Sm-like protein LSm7; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome; Belongs to the snRNP Sm proteins family (103 aa)
SNRPA1U2 small nuclear ribonucleoprotein A; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA; Belongs to the U2 small nuclear ribonucleoprotein A family (255 aa)
PRPF38APre-mRNA-splicing factor 38A; May be required for pre-mRNA splicing; Belongs to the PRP38 family (312 aa)
SNRNP40U5 small nuclear ribonucleoprotein 40 kDa protein; Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs; Spliceosomal Bact complex (357 aa)
SNRPFSmall nuclear ribonucleoprotein F; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (86 aa)
TXNL4AThioredoxin-like protein 4A; Essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes that are involved in spliceosome assembly; Belongs to the DIM1 family (142 aa)
SNRPGSmall nuclear ribonucleoprotein G; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing (76 aa)
SNRPD1Small nuclear ribonucleoprotein Sm D1; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP- snRNP interactions through nonspecific [...] (119 aa)
LSM3U6 snRNA-associated Sm-like protein LSm3; Binds specifically to the 3’-terminal U-tract of U6 snRNA; Belongs to the snRNP Sm proteins family (102 aa)
SF3B3Splicing factor 3B subunit 3; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (1217 aa)
PPIHPeptidyl-prolyl cis-trans isomerase H; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Participates in pre-mRNA splicing. May play a role in the assembly of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome. May act as a chaperone; Cyclophilin peptidylprolyl isomerases (177 aa)
DDX23Probable ATP-dependent RNA helicase DDX23; Involved in pre-mRNA splicing and its phosphorylated form (by SRPK2) is required for spliceosomal B complex formation; DEAD-box helicases (820 aa)
PRPF3U4/U6 small nuclear ribonucleoprotein Prp3; Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome; U4/U6 small nucleolar ribonucleoprotein (683 aa)
SNRNP200U5 small nuclear ribonucleoprotein 200 kDa helicase; RNA helicase that plays an essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes. Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome (2136 aa)
PRPF31U4/U6 small nuclear ribonucleoprotein Prp31; Involved in pre-mRNA splicing. Required for the assembly of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome; U4/U6 small nucleolar ribonucleoprotein (499 aa)
PRPF4U4/U6 small nuclear ribonucleoprotein Prp4; Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome; U4/U6 small nucleolar ribonucleoprotein (522 aa)
LSM2U6 snRNA-associated Sm-like protein LSm2; Binds specifically to the 3’-terminal U-tract of U6 snRNA. May be involved in pre-mRNA splicing; Belongs to the snRNP Sm proteins family (95 aa)
SMU1WD40 repeat-containing protein SMU1; Auxiliary spliceosomal protein that regulates selection of alternative splice sites in a small set of target pre-mRNA species (Probable). Regulates alternative splicing of the HSPG2 pre-mRNA (By similarity). Required for normal mitotic spindle assembly and normal progress through mitosis. Required for normal accumulation of IK; Belongs to the WD repeat SMU1 family (513 aa)
EFTUD2116 kDa U5 small nuclear ribonucleoprotein component; Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex required for pre-mRNA splicing. Binds GTP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily (972 aa)
LSM5U6 snRNA-associated Sm-like protein LSm5; Plays a role in U6 snRNP assembly and function. Binds to the 3’ end of U6 snRNA, thereby facilitating formation of the spliceosomal U4/U6 duplex formation in vitro; LSm proteins (91 aa)
SNRPBSmall nuclear ribonucleoprotein-associated proteins B and B; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (240 aa)
LSM6U6 snRNA-associated Sm-like protein LSm6; Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner, facilitating the efficient association of RNA processing factors with their substrates. Component of the cytoplasmic LSM1-LSM7 complex, which is thought to be involved in mRNA degradation by activating the decapping step in the 5’-to-3’ mRNA decay pathway. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 d [...] (80 aa)
LSM4U6 snRNA-associated Sm-like protein LSm4; Binds specifically to the 3’-terminal U-tract of U6 snRNA; Belongs to the snRNP Sm proteins family (139 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]