• Version:
  • 11.0 [archived version]
STRINGSTRING
PPP5C PPP5C EEA1 EEA1 PPEF2 PPEF2 PPP2R2A PPP2R2A PYGL PYGL PPP4C PPP4C PPP2R2C PPP2R2C PPP1CA PPP1CA PYGM PYGM PPP2CB PPP2CB GYS1 GYS1 PPP1CC PPP1CC PYGB PYGB PPP2R2B PPP2R2B GYS2 GYS2 PPP2R2D PPP2R2D PPP1CB PPP1CB GYG1 GYG1 PPP1R3C PPP1R3C EPM2A EPM2A AASDHPPT AASDHPPT PPP1R3D PPP1R3D NHLRC1 NHLRC1 STBD1 STBD1 PPEF1 PPEF1 TXNRD2 TXNRD2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PPP5CSerine/threonine-protein phosphatase 5; Serine/threonine-protein phosphatase that dephosphorylates a myriad of proteins involved in different signaling pathways including the kinases CSNK1E, ASK1/MAP3K5, PRKDC and RAF1, the nuclear receptors NR3C1, PPARG, ESR1 and ESR2, SMAD proteins and TAU/MAPT. Implicated in wide ranging cellular processes, including apoptosis, differentiation, DNA damage response, cell survival, regulation of ion channels or circadian rhythms, in response to steroid and thyroid hormones, calcium, fatty acids, TGF-beta as well as oxidative and genotoxic stresses. Pa [...] (499 aa)
PYGMGlycogen phosphorylase, muscle form; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties (842 aa)
PYGLGlycogen phosphorylase, liver form; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties (847 aa)
PYGBGlycogen phosphorylase, brain form; Glycogen phosphorylase that regulates glycogen mobilization. Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties (843 aa)
PPP2CBSerine/threonine-protein phosphatase 2A catalytic subunit beta isoform; PP2A can modulate the activity of phosphorylase B kinase casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase; Protein phosphatase catalytic subunits (309 aa)
STBD1Starch-binding domain-containing protein 1; Acts as a cargo receptor for glycogen. Delivers its cargo to an autophagic pathway called glycophagy, resulting in the transport of glycogen to lysosomes (358 aa)
PPP1R3CProtein phosphatase 1 regulatory subunit 3C; Acts as a glycogen-targeting subunit for PP1 and regulates its activity. Activates glycogen synthase, reduces glycogen phosphorylase activity and limits glycogen breakdown. Dramatically increases basal and insulin-stimulated glycogen synthesis upon overexpression in a variety of cell types; Protein phosphatase 1 regulatory subunits (317 aa)
GYS2Glycogen [starch] synthase, liver; Transfers the glycosyl residue from UDP-Glc to the non- reducing end of alpha-1,4-glucan; Glycosyl transferases group 1 domain containing (703 aa)
AASDHPPTL-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase; Catalyzes the post-translational modification of target proteins by phosphopantetheine. Can transfer the 4’- phosphopantetheine moiety from coenzyme A to a serine residue of a broad range of acceptors, such as the acyl carrier domain of FASN (309 aa)
PPP4CSerine/threonine-protein phosphatase 4 catalytic subunit; Protein phosphatase that is involved in many processes such as microtubule organization at centrosomes, maturation of spliceosomal snRNPs, apoptosis, DNA repair, tumor necrosis factor (TNF)-alpha signaling, activation of c-Jun N-terminal kinase MAPK8, regulation of histone acetylation, DNA damage checkpoint signaling, NF-kappa-B activation and cell migration. The PPP4C- PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AFX phospho [...] (307 aa)
PPEF2Serine/threonine-protein phosphatase with EF-hands 2; May play a role in phototransduction. May dephosphorylate photoactivated rhodopsin. May function as a calcium sensing regulator of ionic currents, energy production or synaptic transmission; Belongs to the PPP phosphatase family (753 aa)
GYS1Glycogen [starch] synthase, muscle; Transfers the glycosyl residue from UDP-Glc to the non- reducing end of alpha-1,4-glucan; Glycosyl transferases group 1 domain containing (737 aa)
EEA1Early endosome antigen 1; Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate and participates in endosomal trafficking; Zinc fingers FYVE-type (1411 aa)
PPP2R2ASerine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform; The B regulatory subunit might modulate substrate selectivity and catalytic activity, and also might direct the localization of the catalytic enzyme to a particular subcellular compartment; Protein phosphatase 2 regulatory subunits (457 aa)
PPP1CASerine/threonine-protein phosphatase PP1-alpha catalytic subunit; Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets. Protein phosphatase 1 (PP1) is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Involved in regulation of ionic conductances and long-term synaptic plasticity. May play an important role in dephosphorylating substrates such as the postsynaptic density-associated Ca(2+)/calmodulin de [...] (341 aa)
PPP2R2CSerine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B gamma isoform; The B regulatory subunit might modulate substrate selectivity and catalytic activity, and also might direct the localization of the catalytic enzyme to a particular subcellular compartment (447 aa)
GYG1Glycogenin-1; Self-glucosylates, via an inter-subunit mechanism, to form an oligosaccharide primer that serves as substrate for glycogen synthase; Glycosyltransferase family 8 (350 aa)
PPP1CCSerine/threonine-protein phosphatase PP1-gamma catalytic subunit; Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets. Protein phosphatase 1 (PP1) is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Dephosphorylates RPS6KB1. Involved in regulation of ionic conductances and long-term synaptic plasticity. May play an important role in dephosphorylating substrates such as the postsynaptic density- asso [...] (337 aa)
NHLRC1E3 ubiquitin-protein ligase NHLRC1; E3 ubiquitin-protein ligase. Together with the phosphatase EPM2A/laforin, appears to be involved in the clearance of toxic polyglucosan and protein aggregates via multiple pathways. In complex with EPM2A/laforin and HSP70, suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system (UPS). Ubiquitinates the glycogen-targeting protein phosphatase subunits PPP1R3C/PTG and PPP1R3D in a laforin-dependent manner and targets them for proteasome-dependent degradation, thus decreasing glycogen [...] (395 aa)
PPEF1Serine/threonine-protein phosphatase with EF-hands 1; May have a role in the recovery or adaptation response of photoreceptors. May have a role in development; EF-hand domain containing (653 aa)
EPM2ALaforin; Plays an important role in preventing glycogen hyperphosphorylation and the formation of insoluble aggregates, via its activity as glycogen phosphatase, and by promoting the ubiquitination of proteins involved in glycogen metabolism via its interaction with the E3 ubiquitin ligase NHLRC1/malin. Shows strong phosphatase activity towards complex carbohydrates in vitro, avoiding glycogen hyperphosphorylation which is associated with reduced branching and formation of insoluble aggregates. Dephosphorylates phosphotyrosine and synthetic substrates, such as para- nitrophenylphosphat [...] (331 aa)
PPP1R3DProtein phosphatase 1 regulatory subunit 3D; Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis; Protein phosphatase 1 regulatory subunits (299 aa)
PPP2R2BSerine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform; The B regulatory subunit might modulate substrate selectivity and catalytic activity, and also might direct the localization of the catalytic enzyme to a particular subcellular compartment. Within the PP2A holoenzyme complex, isoform 2 is required to promote proapoptotic activity (By similarity). Isoform 2 regulates neuronal survival through the mitochondrial fission and fusion balance (By similarity) (509 aa)
PPP1CBSerine/threonine-protein phosphatase PP1-beta catalytic subunit; Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets. Protein phosphatase (PP1) is essential for cell division, it participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Involved in regulation of ionic conductances and long-term synaptic plasticity. Component of the PTW/PP1 phosphatase complex, which plays a role in the control of chromatin structure and cell cycle progressi [...] (327 aa)
TXNRD2Thioredoxin reductase 2, mitochondrial; Maintains thioredoxin in a reduced state. Implicated in the defenses against oxidative stress. May play a role in redox- regulated cell signaling; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family (524 aa)
PPP2R2DSerine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform; B regulatory subunit of protein phosphatase 2A (PP2A) that plays a key role in cell cycle by controlling mitosis entry and exit. The activity of PP2A complexes containing PPP2R2D (PR55- delta) fluctuate during the cell cycle- the activity is high in interphase and low in mitosis. During mitosis, activity of PP2A is inhibited via interaction with phosphorylated ENSA and ARPP19 inhibitors. Within the PP2A complexes, the B regulatory subunits modulate substrate selectivity and catalytic activity, and also m [...] (453 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]