• Version:
  • 11.0 [archived version]
STRINGSTRING
HPRT1 HPRT1 ENTPD8 ENTPD8 ENTPD3 ENTPD3 ENTPD1 ENTPD1 APRT APRT NUDT16 NUDT16 CANT1 CANT1 NT5C1A NT5C1A ENTPD6 ENTPD6 NT5C NT5C NT5C1B NT5C1B SHMT2 SHMT2 ENTPD4 ENTPD4 NT5E NT5E ATIC ATIC IMPDH2 IMPDH2 NT5C2 NT5C2 FTCD FTCD NT5C3B NT5C3B ENTPD5 ENTPD5 GMPR GMPR NT5M NT5M MTR MTR IMPDH1 IMPDH1 MTHFD1 MTHFD1 ITPA ITPA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MTHFD1C-1-tetrahydrofolate synthase, cytoplasmic; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family (935 aa)
NT5C1ACytosolic 5’-nucleotidase 1A; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides and has a broad substrate specificity. Helps to regulate adenosine levels in heart during ischemia and hypoxia; 5’-nucleotidases (368 aa)
ATICBifunctional purine biosynthesis protein PURH; Bifunctional enzyme that catalyzes 2 steps in purine biosynthesis; Belongs to the PurH family (592 aa)
NT5C5’(3’)-deoxyribonucleotidase, cytosolic type; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP; Belongs to the 5’(3’)-deoxyribonucleotidase family (201 aa)
NT5E5’-nucleotidase; Hydrolyzes extracellular nucleotides into membrane permeable nucleosides. Exhibits AMP-, NAD-, and NMN-nucleosidase activities; Belongs to the 5’-nucleotidase family (574 aa)
GMPRGMP reductase 1; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides; Belongs to the IMPDH/GMPR family. GuaC type 1 subfamily (345 aa)
FTCDFormimidoyltransferase-cyclodeaminase; Folate-dependent enzyme, that displays both transferase and deaminase activity. Serves to channel one-carbon units from formiminoglutamate to the folate pool; In the N-terminal section; belongs to the formiminotransferase family (541 aa)
HPRT1Hypoxanthine-guanine phosphoribosyltransferase; Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5- phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway (218 aa)
ENTPD3Ectonucleoside triphosphate diphosphohydrolase 3; Has a threefold preference for the hydrolysis of ATP over ADP (529 aa)
CANT1Soluble calcium-activated nucleotidase 1; Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis (401 aa)
IMPDH2Inosine-5’-monophosphate dehydrogenase 2; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors (514 aa)
SHMT2Serine hydroxymethyltransferase, mitochondrial; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism. Thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA. Plays a role in the deubiquitination of target proteins as component of the BRISC complex. Required for IFNAR1 deubiquitination by the BRISC complex; Belongs to the SHMT family (504 aa)
ENTPD5Ectonucleoside triphosphate diphosphohydrolase 5; Uridine diphosphatase (UDPase) that promotes protein N- glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. The nucleotide hydrolyzing preference is GDP > IDP > UDP, but not any other nucleoside di-, mono- or triphosphates, nor thia [...] (428 aa)
NT5C2Cytosolic purine 5’-nucleotidase; May have a critical role in the maintenance of a constant composition of intracellular purine/pyrimidine nucleotides in cooperation with other nucleotidases. Preferentially hydrolyzes inosine 5’-monophosphate (IMP) and other purine nucleotides; 5’-nucleotidases (561 aa)
IMPDH1Inosine-5’-monophosphate dehydrogenase 1; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors; Belongs to the IMPDH/GMPR family (599 aa)
ENTPD4Ectonucleoside triphosphate diphosphohydrolase 4; Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent. The order of activity with different substrates is UDP >> GDP = CDP = TDP, AMP, ADP, ATP and UMP are not substrates. Preferred substrates for isoform 2 are CTP, UDP, CDP, GTP and GDP, while isoform 1 utilizes UTP and TTP; Belongs to the GDA1/CD39 NTPase family (616 aa)
NT5C1BCytosolic 5’-nucleotidase 1B; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides. Helps to regulate adenosine levels (By similarity); 5’-nucleotidases (610 aa)
MTRMethionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family (1265 aa)
ENTPD1Ectonucleoside triphosphate diphosphohydrolase 1; In the nervous system, could hydrolyze ATP and other nucleotides to regulate purinergic neurotransmission. Could also be implicated in the prevention of platelet aggregation by hydrolyzing platelet-activating ADP to AMP. Hydrolyzes ATP and ADP equally well; Belongs to the GDA1/CD39 NTPase family (522 aa)
ENTPD8Ectonucleoside triphosphate diphosphohydrolase 8; Canalicular ectonucleoside NTPDase responsible for the main hepatic NTPDase activity. Ectonucleoside NTPDases catalyze the hydrolysis of gamma- and beta-phosphate residues of nucleotides, playing a central role in concentration of extracellular nucleotides. Has activity toward ATP, ADP, UTP and UDP, but not toward AMP (495 aa)
ENTPD6Ectonucleoside triphosphate diphosphohydrolase 6; Might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyze the hydrolysis of extracellular nucleotides. Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent, there is no hydrolysis of nucleoside 5’-monophosphates. The order of activity with different substrates is GDP > IDP >> UDP = CDP >> ADP (By similarity); Belongs to the GDA1/CD39 NTPase family (484 aa)
APRTAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis (180 aa)
ITPAInosine triphosphate pyrophosphatase; Pyrophosphatase that hydrolyzes the non-canonical purine nucleotides inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) as well as 2’-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) and xanthosine 5’-triphosphate (XTP) to their respective monophosphate derivatives. The enzyme does not distinguish between the deoxy- and ribose forms. Probably excludes non-canonical purines from RNA and DNA precursor pools, thus preventing their incorporation into RNA and DNA and avoiding chromosomal lesions (194 aa)
NT5M5’(3’)-deoxyribonucleotidase, mitochondrial; Dephosphorylates specifically the 5’ and 2’(3’)- phosphates of uracil and thymine deoxyribonucleotides, and so protects mitochondrial DNA replication from excess dTTP. Has only marginal activity towards dIMP and dGMP; 5’-nucleotidases (228 aa)
NT5C3B7-methylguanosine phosphate-specific 5’-nucleotidase; Specifically hydrolyzes 7-methylguanosine monophosphate (m(7)GMP) to 7-methylguanosine and inorganic phosphate. The specific activity for m(7)GMP may protect cells against undesired salvage of m(7)GMP and its incorporation into nucleic acids. Also has weak activity for CMP. UMP and purine nucleotides are poor substrates (300 aa)
NUDT16U8 snoRNA-decapping enzyme; RNA-binding and decapping enzyme that catalyzes the cleavage of the cap structure of snoRNAs and mRNAs in a metal- dependent manner. Part of the U8 snoRNP complex that is required for the accumulation of mature 5.8S and 28S rRNA. Has diphosphatase activity and removes m7G and/or m227G caps from U8 snoRNA and leaves a 5’monophosphate on the RNA. Catalyzes also the cleavage of the cap structure on mRNAs. Does not hydrolyze cap analog structures like 7-methylguanosine nucleoside triphosphate (m7GpppG). Also hydrolysis m7G- and m227G U3-capped RNAs but with less [...] (227 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]