• Version:
  • 11.0 [archived version]
STRINGSTRING
KCNG3 KCNG3 KCNG4 KCNG4 DUSP12 DUSP12 KCNG2 KCNG2 TRIM63 TRIM63 KCNA6 KCNA6 F2 F2 KCNF1 KCNF1 KCNA7 KCNA7 LEO1 LEO1 KCNS1 KCNS1 ZBTB1 ZBTB1 PSMC1 PSMC1 RPL37 RPL37 KCND3 KCND3 AKR7A2 AKR7A2 KCNC1 KCNC1 KCNH1 KCNH1 KCNA5 KCNA5 TXN TXN AKR7A3 AKR7A3 KCNS2 KCNS2 KCNQ1 KCNQ1 KCNH5 KCNH5 KCND1 KCND1 KCNQ4 KCNQ4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
KCNQ1Potassium voltage-gated channel subfamily KQT member 1; Potassium channel that plays an important role in a number of tissues, including heart, inner ear, stomach and colon (By similarity). Associates with KCNE beta subunits that modulates current kinetics (By similarity). Induces a voltage-dependent by rapidly activating and slowly deactivating potassium-selective outward current (By similarity). Promotes also a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta- adrenergic receptor stimulation participates in cardiac [...] (676 aa)
KCND1Potassium voltage-gated channel subfamily D member 1; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits; Belongs to the potassium channel family. D (Shal) (TC 1.A.1.2) subfamily. Kv4.1/KCND1 sub-subfamily (647 aa)
KCNA7Potassium voltage-gated channel subfamily A member 7; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (By similarity); Belongs to the potassium channel family. A (Shaker) (TC 1.A.1.2) subfamily. Kv1.7/KCNA7 sub-subfamily (456 aa)
AKR7A2Aflatoxin B1 aldehyde reductase member 2; Catalyzes the NADPH-dependent reduction of succinic semialdehyde to gamma-hydroxybutyrate. May have an important role in producing the neuromodulator gamma-hydroxybutyrate (GHB). Has broad substrate specificity. Has NADPH-dependent aldehyde reductase activity towards 2-carboxybenzaldehyde, 2- nitrobenzaldehyde and pyridine-2-aldehyde (in vitro). Can reduce 1,2-naphthoquinone and 9,10-phenanthrenequinone (in vitro). Can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. May be involved in protect [...] (359 aa)
KCNA5Potassium voltage-gated channel subfamily A member 5; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well; [...] (613 aa)
PSMC126S proteasome regulatory subunit 4; Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC1 belongs to the heterohexameric ring of AAA (ATPases associated with [...] (440 aa)
KCNQ4Potassium voltage-gated channel subfamily KQT member 4; Probably important in the regulation of neuronal excitability. May underlie a potassium current involved in regulating the excitability of sensory cells of the cochlea. KCNQ4 channels are blocked by linopirdin, XE991 and bepridil, whereas clofilium is without significant effect. Muscarinic agonist oxotremorine-M strongly suppress KCNQ4 current in CHO cells in which cloned KCNQ4 channels were coexpressed with M1 muscarinic receptors; Deafness associated genes (695 aa)
KCNC1Potassium voltage-gated channel subfamily C member 1; Voltage-gated potassium channel that plays an important role in the rapid repolarization of fast-firing brain neurons. The channel opens in response to the voltage difference across the membrane, forming a potassium-selective channel through which potassium ions pass in accordance with their electrochemical gradient. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNC2, and possibly other family members as well. Contributes to fire sustained trains of very brief action [...] (585 aa)
KCNH1Potassium voltage-gated channel subfamily H member 1; Pore-forming (alpha) subunit of a voltage-gated delayed rectifier potassium channel. Channel properties are modulated by subunit assembly. Mediates IK(NI) current in myoblasts. Involved in the regulation of cell proliferation and differentiation, in particular adipogenic and osteogenic differentiation in bone marrow-derived mesenchymal stem cells (MSCs); Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv10.1/KCNH1 sub-subfamily (989 aa)
RPL3760S ribosomal protein L37; Binds to the 23S rRNA; L ribosomal proteins (97 aa)
KCNA6Potassium voltage-gated channel subfamily A member 6; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA6, and possibly other family members as well; [...] (529 aa)
KCNS2Potassium voltage-gated channel subfamily S member 2; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1 and KCNB2; modulates the delayed rectifier voltage- gated potassium channel activation and deactivation rates of KCNB1 and KCNB2 (477 aa)
KCNF1Potassium voltage-gated channel subfamily F member 1; Putative voltage-gated potassium channel; Belongs to the potassium channel family. F (TC 1.A.1.2) subfamily. Kv5.1/KCNF1 sub-subfamily (494 aa)
LEO1RNA polymerase-associated protein LEO1; Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non- phosphorylated and ’Ser-2’- and ’Ser-5’-phosphorylated forms and is involved in transcriptional elongation, acting both indepentently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox [...] (666 aa)
KCNG3Potassium voltage-gated channel subfamily G member 3; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; this promotes a reduction in the rate of activation and inactivation of the delayed rectifier voltage-gated potassium channel KCNB1; Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.3/KCNG3 sub-subfamily (436 aa)
KCNS1Potassium voltage-gated channel subfamily S member 1; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1 and KCNB2; modulates the delayed rectifier voltage- gated potassium channel activation and deactivation rates of KCNB1 and KCNB2 (526 aa)
F2Prothrombin; Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing; Belongs to the peptidase S1 family (622 aa)
KCNG4Potassium voltage-gated channel subfamily G member 4; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1; Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.4/KCNG4 sub-subfamily (519 aa)
KCNG2Potassium voltage-gated channel subfamily G member 2; Potassium channel subunit. Modulates channel activity by shifting the threshold and the half-maximal activation to more negative values; Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.2/KCNG2 sub-subfamily (466 aa)
KCND3Potassium voltage-gated channel subfamily D member 3; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits; Belongs to the potassium channel family. D (Shal) (TC 1.A.1.2) subfamily. Kv4.3/KCND3 sub-subfamily (655 aa)
KCNH5Potassium voltage-gated channel subfamily H member 5; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits a non-inactivating outward rectifying current. Channel properties may be modulated by cAMP and subunit assembly; Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv10.2/KCNH5 sub-subfamily (988 aa)
AKR7A3Aflatoxin B1 aldehyde reductase member 3; Can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. May be involved in protection of liver against the toxic and carcinogenic effects of AFB1, a potent hepatocarcinogen; Aldo-keto reductases (331 aa)
DUSP12Dual specificity protein phosphatase 12; Dual specificity phosphatase; can dephosphorylate both phosphotyrosine and phosphoserine or phosphothreonine residues. Can dephosphorylate glucokinase (in vitro) (By similarity). Has phosphatase activity with the synthetic substrate 6,8-difluoro-4- methylumbelliferyl phosphate and other in vitro substrates; Belongs to the protein-tyrosine phosphatase family. Non-receptor class dual specificity subfamily (340 aa)
TRIM63E3 ubiquitin-protein ligase TRIM63; E3 ubiquitin ligase. Mediates the ubiquitination and subsequent proteasomal degradation of CKM, GMEB1 and HIBADH. Regulates the proteasomal degradation of muscle proteins under amino acid starvation, where muscle protein is catabolized to provide other organs with amino acids. Inhibits de novo skeletal muscle protein synthesis under amino acid starvation. Regulates proteasomal degradation of cardiac troponin I/TNNI3 and probably of other sarcomeric-associated proteins. May play a role in striated muscle atrophy and hypertrophy by regulating an anti- [...] (353 aa)
TXNThioredoxin; Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates A [...] (105 aa)
ZBTB1Zinc finger and BTB domain-containing protein 1; Acts as a transcriptional repressor. Represses cAMP-responsive element (CRE)-mediated transcriptional activation. In addition, has a role in translesion DNA synthesis. Requires for UV-inducible RAD18 loading, PCNA monoubiquitination, POLH recruitment to replication factories and efficient translesion DNA synthesis. Plays a key role in the transcriptional regulation of T lymphocyte development (By similarity); BTB domain containing (713 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]