• Version:
  • 11.0 [archived version]
STRINGSTRING
SOX15 SOX15 FHL2 FHL2 NKX2-3 NKX2-3 HAND1 HAND1 ACHE ACHE HAND2 HAND2 PPP2R5D PPP2R5D HEY2 HEY2 MEF2A MEF2A HEYL HEYL NKX2-5 NKX2-5 TCF12 TCF12 ID2 ID2 LDB2 LDB2 TCF4 TCF4 TCF3 TCF3 MYOD1 MYOD1 LDB1 LDB1 ASCL1 ASCL1 SRA1 SRA1 ID1 ID1 ALDOA ALDOA ALDOC ALDOC ALDOB ALDOB PRKCA PRKCA PRKACA PRKACA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ALDOCAldolase, fructose-bisphosphate C (364 aa)
HAND1Heart- and neural crest derivatives-expressed protein 1; Transcription factor that plays an essential role in both trophoblast-giant cells differentiation and in cardiac morphogenesis. In the adult, could be required for ongoing expression of cardiac-specific genes. Binds the DNA sequence 5’- NRTCTG-3’ (non-canonical E-box) (By similarity); Basic helix-loop-helix proteins (215 aa)
ID2DNA-binding protein inhibitor ID-2; Transcriptional regulator (lacking a basic DNA binding domain) which negatively regulates the basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibiting their DNA binding and transcriptional activity. Implicated in regulating a variety of cellular processes, including cellular growth, senescence, differentiation, apoptosis, angiogenesis, and neoplastic transformation. Inhibits skeletal muscle and cardiac myocyte differentiation. Regulates the circadian clock by repressing the transcriptional activator activity of the C [...] (134 aa)
MYOD1Myoblast determination protein 1; Acts as a transcriptional activator that promotes transcription of muscle-specific target genes and plays a role in muscle differentiation. Together with MYF5 and MYOG, co-occupies muscle-specific gene promoter core region during myogenesis. Induces fibroblasts to differentiate into myoblasts. Interacts with and is inhibited by the twist protein. This interaction probably involves the basic domains of both proteins (By similarity) (320 aa)
TCF3Transcription factor E2-alpha; Transcriptional regulator. Involved in the initiation of neuronal differentiation. Heterodimers between TCF3 and tissue- specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation. Dimers bind DNA on E- box motifs- 5’-CANNTG-3’. Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer. Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (654 aa)
ASCL1Achaete-scute homolog 1; Transcription factor that plays a key role in neuronal differentiation- acts as a pioneer transcription factor, accessing closed chromatin to allow other factors to bind and activate neural pathways. Directly binds the E box motif (5’-CANNTG-3’) on promoters and promotes transcription of neuronal genes. The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro. Plays a role at early stages of development of specific neural lineages in mos [...] (236 aa)
ACHEAcetylcholinesterase; Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. Role in neuronal apoptosis; Belongs to the type-B carboxylesterase/lipase family (617 aa)
LDB2LIM domain-binding protein 2; Binds to the LIM domain of a wide variety of LIM domain- containing transcription factors; Belongs to the LDB family (373 aa)
PRKACAcAMP-dependent protein kinase catalytic subunit alpha; Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA and VASP. RORA is activated by phosphorylation. Required for glucose- mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the [...] (351 aa)
NKX2-5Homeobox protein Nkx-2.5; Implicated in commitment to and/or differentiation of the myocardial lineage. Acts as a transcriptional activator of ANF in cooperation with GATA4 (By similarity). Binds to the core DNA motif of NPPA promoter. It is transcriptionally controlled by PBX1 and acts as a transcriptional repressor of CDKN2B (By similarity). It is required for spleen development; NKL subclass homeoboxes and pseudogenes (324 aa)
SRA1Steroid receptor RNA activator 1; Functional RNA which acts as a transcriptional coactivator that selectively enhances steroid receptor-mediated transactivation ligand-independently through a mechanism involving the modulating N-terminal domain (AF-1) of steroid receptors. Also mediates transcriptional coactivation of steroid receptors ligand- dependently through the steroid-binding domain (AF-2). Enhances cellular proliferation and differentiation and promotes apoptosis in vivo. May play a role in tumorigenesis; Belongs to the SRA1 family (236 aa)
NKX2-3Homeobox protein Nkx-2.3; Transcription factor; NKL subclass homeoboxes and pseudogenes (364 aa)
MEF2AMyocyte-specific enhancer factor 2A; Transcriptional activator which binds specifically to the MEF2 element, 5’-YTA[AT](4)TAR-3’, found in numerous muscle- specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylat [...] (499 aa)
HAND2Heart- and neural crest derivatives-expressed protein 2; Essential for cardiac morphogenesis, particularly for the formation of the right ventricle and of the aortic arch arteries. Required for vascular development and regulation of angiogenesis, possibly through a VEGF signaling pathway. Plays also an important role in limb development, particularly in the establishment of anterior-posterior polarization, acting as an upstream regulator of sonic hedgehog (SHH) induction in the limb bud. Is involved in the development of branchial arches, which give rise to unique structures in the hea [...] (217 aa)
SOX15Protein SOX-15; Binds to the 5’-AACAAT-3’ sequence; SRY-boxes (233 aa)
HEY2Hairy/enhancer-of-split related with YRPW motif protein 2; Downstream effector of Notch signaling which may be required for cardiovascular development. Transcriptional repressor which binds preferentially to the canonical E box sequence 5’- CACGTG-3’. Represses transcription by the cardiac transcriptional activators GATA4 and GATA6; Belongs to the HEY family (337 aa)
HEYLHairy/enhancer-of-split related with YRPW motif-like protein; Downstream effector of Notch signaling which may be required for cardiovascular development (By similarity). Transcriptional repressor which binds preferentially to the canonical E box sequence 5’-CACGTG-3’ (By similarity). Represses transcription by the cardiac transcriptional activators GATA4 and GATA6; Basic helix-loop-helix proteins (328 aa)
ALDOBAldolase, fructose-bisphosphate B (364 aa)
ID1DNA-binding protein inhibitor ID-1; Transcriptional regulator (lacking a basic DNA binding domain) which negatively regulates the basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibiting their DNA binding and transcriptional activity. Implicated in regulating a variety of cellular processes, including cellular growth, senescence, differentiation, apoptosis, angiogenesis, and neoplastic transformation. Inhibits skeletal muscle and cardiac myocyte differentiation. Regulates the circadian clock by repressing the transcriptional activator activity of the C [...] (155 aa)
ALDOAFructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity); Belongs to the class I fructose-bisphosphate aldolase family (418 aa)
TCF4Transcription factor 4; Transcription factor that binds to the immunoglobulin enchancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5’-CANNTG-3’). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5’-ACANNTGT-3’ or 5’-CCANNTGG-3’; Basic helix-loop-helix proteins (773 aa)
FHL2Four and a half LIM domains protein 2; May function as a molecular transmitter linking various signaling pathways to transcriptional regulation. Negatively regulates the transcriptional repressor E4F1 and may function in cell growth. Inhibits the transcriptional activity of FOXO1 and its apoptotic function by enhancing the interaction of FOXO1 with SIRT1 and FOXO1 deacetylation; LIM domain containing (279 aa)
TCF12Transcription factor 12; Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5’-CANNTG-3’); Basic helix-loop-helix proteins (706 aa)
LDB1LIM domain-binding protein 1; Binds to the LIM domain of a wide variety of LIM domain- containing transcription factors. May regulate the transcriptional activity of LIM-containing proteins by determining specific partner interactions. Plays a role in the development of interneurons and motor neurons in cooperation with LHX3 and ISL1. Acts synergistically with LHX1/LIM1 in axis formation and activation of gene expression. Acts with LMO2 in the regulation of red blood cell development, maintaining erythroid precursors in an immature state (By similarity) (411 aa)
PRKCAProtein kinase C alpha type; Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating targets such as RAF1, BCL2, CSPG4, TNNT2/CTNT, or activating signaling cascade involving MAPK1/3 (ERK1/2) and RAP1GAP. Involved in cell proliferation and cell growth arrest by positive and negative regulation of the cell [...] (672 aa)
PPP2R5DSerine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform; The B regulatory subunit might modulate substrate selectivity and catalytic activity, and also might direct the localization of the catalytic enzyme to a particular subcellular compartment; Belongs to the phosphatase 2A regulatory subunit B56 family (602 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]