• Version:
  • 11.0 [archived version]
STRINGSTRING
NBR1 NBR1 HSPA1A HSPA1A HSPA6 HSPA6 SQSTM1 SQSTM1 HSPA1B HSPA1B E2F8 E2F8 HSPA8 HSPA8 CCT7 CCT7 TRAF6 TRAF6 CCT5 CCT5 STUB1 STUB1 TMEM189 TMEM189 UBE2V1 UBE2V1 UBE2V2 UBE2V2 UBE2N UBE2N UBE2D2 UBE2D2 UBE2D1 UBE2D1 UBE2W UBE2W UBE2D3 UBE2D3 UBE2D4 UBE2D4 UBE2Q1 UBE2Q1 UBE2T UBE2T UBE2E1 UBE2E1 ENSG00000124208 ENSG00000124208 UBE2E2 UBE2E2 UBE2E3 UBE2E3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
STUB1E3 ubiquitin-protein ligase CHIP; E3 ubiquitin-protein ligase which targets misfolded chaperone substrates towards proteasomal degradation. Collaborates with ATXN3 in the degradation of misfolded chaperone substrates- ATXN3 restricting the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension. Ubiquitinates NOS1 in concert with Hsp70 and Hsp40. Modulates the activity of several chaperone complexes, including Hsp70, Hsc70 and Hsp90. Mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation. Me [...] (303 aa)
UBE2D4Ubiquitin-conjugating enzyme E2 D4; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro able to promote polyubiquitination using all 7 ubiquitin Lys residues, but may prefer ’Lys-11’ and ’Lys-48’-linked polyubiquitination; Belongs to the ubiquitin-conjugating enzyme family (147 aa)
CCT7T-complex protein 1 subunit eta; Molecular chaperone; assists the folding of proteins upon ATP hydrolysis. Known to play a role, in vitro, in the folding of actin and tubulin (By similarity); Chaperonins (543 aa)
CCT5T-complex protein 1 subunit epsilon; Molecular chaperone; assists the folding of proteins upon ATP hydrolysis. As part of the BBS/CCT complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia. Known to play a role, in vitro, in the folding of actin and tubulin; Chaperonins (541 aa)
UBE2Q1Ubiquitin-conjugating enzyme E2 Q1; Catalyzes the covalent attachment of ubiquitin to other proteins. May be involved in hormonal homeostasis in females. Involved in regulation of B4GALT1 cell surface expression, B4GALT1-mediated cell adhesion to laminin and embryoid body formation (By similarity); Ubiquitin conjugating enzymes E2 (422 aa)
UBE2E1Ubiquitin-conjugating enzyme E2 E1; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Catalyzes the covalent attachment of ISG15 to other proteins. Mediates the selective degradation of short-lived and abnormal proteins. In vitro also catalyzes ’Lys-48’-linked polyubiquitination; Belongs to the ubiquitin-conjugating enzyme family (193 aa)
HSPA6Heat shock 70 kDa protein 6; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP [...] (643 aa)
UBE2NUbiquitin-conjugating enzyme E2 N; The UBE2V1-UBE2N and UBE2V2-UBE2N heterodimers catalyze the synthesis of non-canonical ’Lys-63’-linked polyubiquitin chains. This type of polyubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage. Acts together with the E3 ligases, HLTF and SHPRH, in the ’Lys-63’-linked poly-ubiquitination of P [...] (152 aa)
UBE2V1Ubiquitin-conjugating enzyme E2 variant 1; Has no ubiquitin ligase activity on its own. The UBE2V1- UBE2N heterodimer catalyzes the synthesis of non-canonical poly- ubiquitin chains that are linked through Lys-63. This type of poly-ubiquitination activates IKK and does not seem to involve protein degradation by the proteasome. Plays a role in the activation of NF-kappa-B mediated by IL1B, TNF, TRAF6 and TRAF2. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair [...] (170 aa)
ENSG00000124208TMEM189-UBE2V1 readthrough; Belongs to the ubiquitin-conjugating enzyme family (370 aa)
UBE2D3Ubiquitin conjugating enzyme E2 D3; Belongs to the ubiquitin-conjugating enzyme family (149 aa)
UBE2TUbiquitin-conjugating enzyme E2 T; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Catalyzes monoubiquitination. Involved in mitomycin-C (MMC)-induced DNA repair. Acts as a specific E2 ubiquitin-conjugating enzyme for the Fanconi anemia complex by associating with E3 ubiquitin-protein ligase FANCL and catalyzing monoubiquitination of FANCD2, a key step in the DNA damage pathway. Also mediates monoubiquitination of FANCL and FANCI. May contribute to ubiquitination and degradation of BRCA1. In vitro able to promote polyubiquitination using a [...] (197 aa)
TMEM189Transmembrane protein 189 (270 aa)
UBE2D1Ubiquitin-conjugating enzyme E2 D1; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys-48’-linked polyubiquitination. Mediates the selective degradation of short-lived and abnormal proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Mediates ubiquitination of PEX5 and auto-ubiquitination of STUB1, TRAF6 and TRIM63/MURF1. Ubiquitinates STUB1-associated HSP90AB1 in vitro. Lacks inherent specificity for any particular lysine residue of ubiquitin. Essential for viral activation of IRF3. Mediates polyubi [...] (147 aa)
HSPA1BHeat shock protein family A member 1B (641 aa)
HSPA1AHeat shock 70 kDa protein 1A; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and AD [...] (641 aa)
SQSTM1Sequestosome-1; Autophagy receptor that interacts directly with both the cargo to become degraded and an autophagy modifier of the MAP1 LC3 family. Along with WDFY3, involved in the formation and autophagic degradation of cytoplasmic ubiquitin-containing inclusions (p62 bodies, ALIS/aggresome-like induced structures). Along with SQSTM1, required to recruit ubiquitinated proteins to PML bodies in the nucleus. May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1. May play a role in titin/TTN downstream signaling in muscle cells. May regulate sign [...] (440 aa)
UBE2E2Ubiquitin-conjugating enzyme E2 E2; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-, as well as ’Lys-63’-linked polyubiquitination. Catalyzes the ISGylation of influenza A virus NS1 protein; Ubiquitin conjugating enzymes E2 (201 aa)
UBE2D2Ubiquitin-conjugating enzyme E2 D2; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 48’-linked polyubiquitination. Mediates the selective degradation of short-lived and abnormal proteins. Functions in the E6/E6-AP- induced ubiquitination of p53/TP53. Mediates ubiquitination of PEX5 and autoubiquitination of STUB1 and TRAF6. Involved in the signal-induced conjugation and subsequent degradation of NFKBIA, FBXW2-mediated GCM1 ubiquitination and degradation, MDM2-dependent degradation of p53/TP53 and the activation of [...] (147 aa)
UBE2E3Ubiquitin-conjugating enzyme E2 E3; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-, as well as ’Lys-63’-linked polyubiquitination. Participates in the regulation of transepithelial sodium transport in renal cells. May be involved in cell growth arrest; Ubiquitin conjugating enzymes E2 (207 aa)
UBE2WUbiquitin-conjugating enzyme E2 W; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Specifically monoubiquitinates the N-terminus of various substrates, including ATXN3, MAPT/TAU, POLR2H/RPB8 and STUB1/CHIP, by recognizing backbone atoms of disordered N-termini. Involved in degradation of misfolded chaperone substrates by mediating monoubiquitination of STUB1/CHIP, leading to recruitment of ATXN3 to monoubiquitinated STUB1/CHIP, and restriction of the length of ubiquitin chain attached to STUB1/CHIP substrates by ATXN3. After UV irradiation [...] (191 aa)
NBR1Next to BRCA1 gene 1 protein; Acts probably as a receptor for selective autophagosomal degradation of ubiquitinated targets; Zinc fingers ZZ-type (966 aa)
UBE2V2Ubiquitin-conjugating enzyme E2 variant 2; Has no ubiquitin ligase activity on its own. The UBE2V2/UBE2N heterodimer catalyzes the synthesis of non-canonical poly-ubiquitin chains that are linked through ’Lys-63’. This type of poly-ubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage (145 aa)
HSPA8Heat shock cognate 71 kDa protein; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis a [...] (646 aa)
TRAF6TNF receptor-associated factor 6; E3 ubiquitin ligase that, together with UBE2N and UBE2V1, mediates the synthesis of ’Lys-63’-linked-polyubiquitin chains conjugated to proteins, such as IKBKG, IRAK1, AKT1 and AKT2. Also mediates ubiquitination of free/unanchored polyubiquitin chain that leads to MAP3K7 activation. Leads to the activation of NF-kappa-B and JUN. May be essential for the formation of functional osteoclasts. Seems to also play a role in dendritic cells (DCs) maturation and/or activation. Represses c- Myb-mediated transactivation, in B-lymphocytes. Adapter protein that see [...] (522 aa)
E2F8Transcription factor E2F8; Atypical E2F transcription factor that participates in various processes such as angiogenesis and polyploidization of specialized cells. Mainly acts as a transcription repressor that binds DNA independently of DP proteins and specifically recognizes the E2 recognition site 5’-TTTC[CG]CGC-3’. Directly represses transcription of classical E2F transcription factors such as E2F1- component of a feedback loop in S phase by repressing the expression of E2F1, thereby preventing p53/TP53-dependent apoptosis. Plays a key role in polyploidization of cells in placenta a [...] (867 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]