• Version:
  • 11.0 [archived version]
STRINGSTRING
HSPA4 HSPA4 KCNK5 KCNK5 KCNN4 KCNN4 CALM1 CALM1 KCNJ13 KCNJ13 CALM3 CALM3 PRKACB PRKACB KCNE3 KCNE3 PRKACG PRKACG CALM2 CALM2 SLC12A2 SLC12A2 KCNQ1 KCNQ1 KCNJ2 KCNJ2 KCNE1L KCNE1L KCNJ12 KCNJ12 KCNQ3 KCNQ3 KCNJ4 KCNJ4 KCNQ5 KCNQ5 KCNQ4 KCNQ4 KCNJ14 KCNJ14 AP2M1 AP2M1 ENSG00000270800 ENSG00000270800 FAU FAU NEDD4L NEDD4L NEDD4 NEDD4 USP2 USP2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
KCNQ1Potassium voltage-gated channel subfamily KQT member 1; Potassium channel that plays an important role in a number of tissues, including heart, inner ear, stomach and colon (By similarity). Associates with KCNE beta subunits that modulates current kinetics (By similarity). Induces a voltage-dependent by rapidly activating and slowly deactivating potassium-selective outward current (By similarity). Promotes also a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta- adrenergic receptor stimulation participates in cardiac [...] (676 aa)
KCNJ13Inward rectifier potassium channel 13; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ13 has a very low single channel conductance, low sensitivity to block by external barium and cesium, and no dependen [...] (360 aa)
KCNJ2Inward rectifier potassium channel 2; Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be bl [...] (427 aa)
USP2Ubiquitin carboxyl-terminal hydrolase 2; Hydrolase that deubiquitinates polyubiquitinated target proteins such as MDM2, MDM4 and CCND1. Isoform 1 and isoform 4 possess both ubiquitin-specific peptidase and isopeptidase activities (By similarity). Deubiquitinates MDM2 without reversing MDM2-mediated p53/TP53 ubiquitination and thus indirectly promotes p53/TP53 degradation and limits p53 activity. Has no deubiquitinase activity against p53/TP53. Prevents MDM2-mediated degradation of MDM4. Plays a role in the G1/S cell-cycle progression in normal and cancer cells. Regulates the circadian [...] (605 aa)
SLC12A2Solute carrier family 12 member 2; Electrically silent transporter system. Mediates sodium and chloride reabsorption. Plays a vital role in the regulation of ionic balance and cell volume; Belongs to the SLC12A transporter family (1212 aa)
KCNN4Intermediate conductance calcium-activated potassium channel protein 4; Forms a voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization which promotes calcium influx. Required for maximal calcium influx and proliferation during the reactivation of naive T-cells. The channel is blocked by clotrimazole and charybdotoxin but is insensitive to apamin; Belongs to the potassium channel KCNN family. KCa3.1/KCNN4 subfamily (427 aa)
KCNQ4Potassium voltage-gated channel subfamily KQT member 4; Probably important in the regulation of neuronal excitability. May underlie a potassium current involved in regulating the excitability of sensory cells of the cochlea. KCNQ4 channels are blocked by linopirdin, XE991 and bepridil, whereas clofilium is without significant effect. Muscarinic agonist oxotremorine-M strongly suppress KCNQ4 current in CHO cells in which cloned KCNQ4 channels were coexpressed with M1 muscarinic receptors; Deafness associated genes (695 aa)
CALM2Calmodulin 2 (phosphorylase kinase, delta); EF-hand domain containing (149 aa)
CALM3Calmodulin 3 (phosphorylase kinase, delta); Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium-dependent inactivation of CACNA1C. Positively regulates calcium-activated potassium channel activity of KCNN2 (149 aa)
AP2M1AP-2 complex subunit mu; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin- coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but [...] (435 aa)
HSPA4Heat shock protein family A member 4; Belongs to the heat shock protein 70 family (840 aa)
KCNJ4Inward rectifier potassium channel 4; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium and cesium (By similarity); Potassium voltage-gated channel subfamily J (445 aa)
KCNE3Potassium voltage-gated channel subfamily E member 3; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Associated with KCNC4/Kv3.4 is proposed to form the subthreshold voltage-gated potassium channel in skeletal muscle and to establish the resting membrane potential (RMP) in muscle cells. Associated with KC [...] (103 aa)
KCNQ5Potassium voltage-gated channel subfamily KQT member 5; Associates with KCNQ3 to form a potassium channel which contributes to M-type current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons. Therefore, it is important in the regulation of neuronal excitability. May contribute, with other potassium channels, to the molecular diversity of a heterogeneous population of M- channels, varying in kinetic and pharmacological properties, which underlie this physiologically important curren [...] (951 aa)
CALM1Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium-dependent inactivation of CACNA1C. Positively regulates calcium-activated potassium channel activity of KCNN2 (149 aa)
KCNK5Potassium channel subfamily K member 5; pH-dependent, voltage insensitive, outwardly rectifying potassium channel. Outward rectification is lost at high external K(+) concentrations; Potassium two pore domain channel subfamily K (499 aa)
PRKACBcAMP-dependent protein kinase catalytic subunit beta; Mediates cAMP-dependent signaling triggered by receptor binding to GPCRs. PKA activation regulates diverse cellular processes such as cell proliferation, the cell cycle, differentiation and regulation of microtubule dynamics, chromatin condensation and decondensation, nuclear envelope disassembly and reassembly, as well as regulation of intracellular transport mechanisms and ion flux. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subu [...] (398 aa)
KCNE1LPotassium voltage-gated channel subfamily E regulatory beta subunit 5; Potassium channel ancillary subunit that is essential for generation of some native K(+) currents by virtue of formation of heteromeric ion channel complex with voltage-gated potassium (Kv) channel pore-forming alpha subunits. Functions as an inhibitory beta-subunit of the repolarizing cardiac potassium ion channel KCNQ1 (142 aa)
PRKACGcAMP-dependent protein kinase catalytic subunit gamma; Phosphorylates a large number of substrates in the cytoplasm and the nucleus; Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. cAMP subfamily (351 aa)
KCNQ3Potassium voltage-gated channel subfamily KQT member 3; Associates with KCNQ2 or KCNQ5 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability; Belongs to the potassium channel family. KQT (TC 1.A.1.15) subfamily. Kv7.3/KCNQ3 sub-subfamily (872 aa)
KCNJ14ATP-sensitive inward rectifier potassium channel 14; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ14 gives rise to low-conductance channels with a low affinity to the channel blockers Barium and Cesium [...] (436 aa)
NEDD4LE3 ubiquitin-protein ligase NEDD4-like; E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Inhibits TGF-beta signaling by triggering SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation. Promotes ubiquitination and internalization of various plasma membrane channels such as ENaC, Nav1.2, Nav1.3, Nav1.5, Nav1.7, Nav1.8, Kv1.3, KCNH2, EAAT1 or CLC5. Promotes ubiquitination and degradation of SGK1 and TNK2. Ubiquitinates BRAT1 and this ubiqu [...] (975 aa)
NEDD4E3 ubiquitin-protein ligase NEDD4; E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Specifically ubiquitinates ’Lys-63’ in target proteins. Involved in the pathway leading to the degradation of VEGFR-2/KDFR, independently of its ubiquitin-ligase activity. Monoubiquitinates IGF1R at multiple sites, thus leading to receptor internalization and degradation in lysosomes. Ubiquitinates FGFR1, leading to receptor internalization and degradation in lysosomes. [...] (1319 aa)
FAUUbiquitin-like protein FUBI; FAU, ubiquitin like and ribosomal protein S30 fusion (133 aa)
KCNJ12ATP-sensitive inward rectifier potassium channel 12; Inward rectifying potassium channel that is activated by phosphatidylinositol 4,5-bisphosphate and that probably participates in controlling the resting membrane potential in electrically excitable cells. Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potas [...] (433 aa)
ENSG00000270800RPS10-NUDT3 readthrough (286 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]