• Version:
  • 11.0 [archived version]
STRINGSTRING
EGLN3 EGLN3 EGLN2 EGLN2 SEC13 SEC13 NUP107 NUP107 EGLN1 EGLN1 HSPA9 HSPA9 NUP98 NUP98 CKS1B CKS1B CKS2 CKS2 NUP85 NUP85 CMSS1 CMSS1 HSP90AB1 HSP90AB1 CYP51A1 CYP51A1 HSPA8 HSPA8 NMD3 NMD3 CYP7B1 CYP7B1 CYP39A1 CYP39A1 ENSG00000160200 ENSG00000160200 TRMT2B TRMT2B CBSL CBSL CYP8B1 CYP8B1 PTGIS PTGIS TRMT2A TRMT2A CYP7A1 CYP7A1 CRY2 CRY2 CRY1 CRY1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CYP51A1Lanosterol 14-alpha demethylase; Catalyzes C14-demethylation of lanosterol; it transforms lanosterol into 4,4’-dimethyl cholesta-8,14,24-triene-3-beta-ol; Cytochrome P450 family 51 (509 aa)
CRY1Cryptochrome-1; Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time- keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots ’circa’ (about) and ’diem’ (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and rena [...] (586 aa)
NUP107Nuclear pore complex protein Nup107; Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. Required for the assembly of peripheral proteins into the NPC. May anchor NUP62 to the NPC; Belongs to the nucleoporin Nup84/Nup107 family (925 aa)
PTGISProstacyclin synthase; Catalyzes the isomerization of prostaglandin H2 to prostacyclin (= prostaglandin I2); Cytochrome P450 family 8 (500 aa)
NUP85Nuclear pore complex protein Nup85; Essential component of the nuclear pore complex (NPC) that seems to be required for NPC assembly and maintenance. As part of the NPC Nup107-160 subcomplex plays a role in RNA export and in tethering NUP96/Nup98 and NUP153 to the nucleus. The Nup107-160 complex seems to be required for spindle assembly during mitosis. NUP85 is required for membrane clustering of CCL2-activated CCR2. Seems to be involved in CCR2-mediated chemotaxis of monocytes and may link activated CCR2 to the phosphatidyl-inositol 3-kinase-Rac-lammellipodium protrusion cascade; Nucl [...] (656 aa)
EGLN3Egl nine homolog 3; Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF2A. Hydroxylation on the NODD site by EGLN3 appears to require prior hydroxylation on the CODD site. Hydroxylated HIFs are then targeted for proteasomal degradation via the v [...] (239 aa)
TRMT2AtRNA (uracil-5-)-methyltransferase homolog A; May be involved in nucleic acid metabolism and/or modifications; tRNA methyltransferases (625 aa)
CYP39A124-hydroxycholesterol 7-alpha-hydroxylase; Involved in the bile acid metabolism. Has a preference for 24-hydroxycholesterol, and converts it into a 7-alpha- hydroxylated product; Cytochrome P450 family 39 (469 aa)
HSPA9Stress-70 protein, mitochondrial; Chaperone protein which plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis. Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (By similarity); Belongs to the heat shock protein 70 family (679 aa)
CYP7A1Cholesterol 7-alpha-monooxygenase; Catalyzes a rate-limiting step in cholesterol catabolism and bile acid biosynthesis by introducing a hydrophilic moiety at position 7 of cholesterol. Important for cholesterol homeostasis; Cytochrome P450 family 7 (504 aa)
CYP7B125-hydroxycholesterol 7-alpha-hydroxylase; Oxysterol 7alpha-hydroxylase that mediates formation of 7-alpha,25-dihydroxycholesterol (7-alpha,25-OHC) from 25- hydroxycholesterol. Plays a key role in cell positioning and movement in lymphoid tissues- 7-alpha,25- dihydroxycholesterol (7-alpha,25-OHC) acts as a ligand for the G protein-coupled receptor GPR183/EBI2, a chemotactic receptor for a number of lymphoid cells (By similarity); Cytochrome P450 family 7 (506 aa)
CKS1BCyclin-dependent kinases regulatory subunit 1; Binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function (79 aa)
NUP98Nuclear pore complex protein Nup98-Nup96; Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC. May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes. Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body); Nucleoporins (1800 aa)
CYP8B17-alpha-hydroxycholest-4-en-3-one 12-alpha-hydroxylase; Involved in bile acid synthesis and is responsible for the conversion of 7 alpha-hydroxy-4-cholesten-3-one into 7 alpha, 12 alpha-dihydroxy-4-cholesten-3-one. Responsible for the balance between formation of cholic acid and chenodeoxycholic acid. Has a rather broad substrate specificity including a number of 7-alpha- hydroxylated C27 steroids; Cytochrome P450 family 8 (501 aa)
EGLN1Egl nine homolog 1; Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF1B. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is [...] (426 aa)
HSP90AB1Heat shock protein HSP 90-beta; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interacti [...] (724 aa)
TRMT2BtRNA (uracil(54)-C(5))-methyltransferase homolog; Probable S-adenosyl-L-methionine-dependent methyltransferase that catalyzes the formation of 5-methyl-uridine at position 54 (m5U54) in all tRNA. May also have a role in tRNA stabilization or maturation (By similarity); Belongs to the class I-like SAM-binding methyltransferase superfamily. RNA M5U methyltransferase family (504 aa)
CKS2Cyclin-dependent kinases regulatory subunit 2; Binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function (79 aa)
SEC13Protein SEC13 homolog; Functions as a component of the nuclear pore complex (NPC) and the COPII coat. At the endoplasmic reticulum, SEC13 is involved in the biogenesis of COPII-coated vesicles; Belongs to the WD repeat SEC13 family (368 aa)
ENSG00000160200Cystathionine-beta-synthase (551 aa)
CBSLCystathionine beta-synthase-like protein; Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L-homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L- homocysteine. Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons (551 aa)
CMSS1Protein CMSS1; Cms1 ribosomal small subunit homolog (279 aa)
NMD360S ribosomal export protein NMD3; Acts as an adapter for the XPO1/CRM1-mediated export of the 60S ribosomal subunit (503 aa)
HSPA8Heat shock cognate 71 kDa protein; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis a [...] (646 aa)
EGLN2Egl nine homolog 2; Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF2A. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is [...] (407 aa)
CRY2Cryptochrome-2; Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time- keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots ’circa’ (about) and ’diem’ (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and rena [...] (614 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]